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Abstract. The large-group behavior of the non-local YM2’s and gYM2’s on a cylinder or a disk is investi-
gated. It is shown that this behavior is similar to that of the corresponding local theory, but with the area
of the cylinder replaced by an effective area depending on the dominant representation. The critical areas
for non-local YM2’s on a cylinder with some special boundary conditions are also obtained.

1 Introduction

Pure two-dimensional Yang–Mills theories (YM2) have
certain properties, such as invariance under area-preserv-
ing diffeomorphisms and lack of any propagating degrees
of freedom. There are, however, ways to generalize these
theories without losing these properties. One way is by the
so-called generalized Yang–Mills theories (gYM2’s). In a
YM2, one starts from a B–F theory in which a Lagrangian
of the form itr(BF ) + tr(B2) is used. Here F is the field-
strength corresponding to the gauge field, and B is an
auxiliary field in the adjoint representation of the gauge
group. Carrying out a path integral over this field leaves an
effective Lagrangian for the gauge field of the form tr(F 2)
[1]. In a gYM2, on the other hand, one uses an arbitrary
class function of the auxiliary field B, instead of tr(B2)
[2]. In [3] the partition function and the expectation values
of the Wilson loops for the gYM2’s were calculated. It is
worthy of mention that for gYM2’s, one cannot eliminate
the auxiliary field and obtain a Lagrangian for the gauge
field. One can, however, use a standard path integration
and calculate the observables of the theory. This was done
in [4].

The study of the behavior of these theories for large
groups is also of interest. This was done in [5,6] for or-
dinary YM2 theories and then in [7] for YM2 and in [8,
9] for gYM2 theories. It was shown that YM2’s and some
classes of gYM2’s have a third-order phase transition in a
certain critical area.

In [10] another generalization of YM2’s was introduced,
namely to use a non-local action for the auxiliary field.
There, the classical behavior, the quantum behavior and
the large-group behavior of the system on a sphere were
studied.

a e-mail: lkhled@molavi.ut.ac.ir
b e-mail: mamwad@iasbs.ac.ir

The large-group behavior of the model on a cylinder
or a disk was investigated in [11] for YM2 and in [12] for
gYM2. Here we want to study the large-group behavior of
a non-local YM2 (or gYM2) on a cylinder.

The scheme of the present paper is the following. In
Sect. 2, it is shown that the dominant representation for
large-group models on a cylinder is obtained from a gen-
eralized Hopf equation, the same Hopf equation as used
for the corresponding local theory. The only difference is
that the area of the cylinder is replaced by an effective
area involving the dominant representation itself.

In Sect. 3, the critical behavior of the model is investi-
gated, and for some special boundary conditions an equa-
tion governing the critical area corresponding to a non-
local Yang–Mills theory is obtained.

2 The dominant representation
for a large-N non-local generalized
Yang–Mills theory on a cylinder

In [10], a non-local Yang–Mills theory was defined through

eS :=
∫

DB exp
{∫

dµitr(BF ) + w

[∫
dµΛ(B)

]}
, (1)

where F is the field strength, B is an auxiliary field in
the adjoint representation of the gauge group, and Λ is
a similarity-invariant function. It was further shown that
the wave function for this theory on a cylinder is

Z(U1, U2) =
∑
R

χR(U−1
1 )χR(U−1

2 ) exp{w[CΛ(R)A]},
(2)

where the summation runs over irreducible representa-
tions of the gauge group, U1 and U2 are the path-ordered
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exponentials of the gauge field on the boundaries, χ is the
character of the group element, and A is the area of the
surface. CΛ is some function related to Λ. Taking CΛ to
be a linear function of the rescaled Casimirs of the gauge
group U(N),

C̃l(R) :=
1

N l+1

N∑
i=1

(ni + N − i)l, (3)

where ni’s are non-increasing functions of i characteriz-
ing the representation (the Young tableau), one defines a
function W by

−N2W

[
A

∑
l

alC̃l(R)

]
:= w[ACΛ(R)]. (4)

In the large-N limit, the exponential in (2) becomes

exp{w[CΛ(R)A]} = exp
{

−N2W

[
A

∫ 1

0
dxG(φ)

]}
, (5)

where
G(φ) :=

∑
l

(−1)lalφ
l. (6)

Also, following [5],

φ :=
i − ni − N

N
, (7)

and

x :=
i

N
. (8)

Following [11], one can write the characters in (2) as a
function of φ(x), and the eigenvalue densities σ1(θ) and
σ2(θ) of the boundary matrices U1 and U2. Then, for large
N , (2) is written as

Z =
∫

Dφ exp

{
− N2W

[
A

∫ 1

0
dxG(φ)

]

+ N2Γ [φ, σ1, σ2]

}
. (9)

Note that the exponent in (9) consists of two parts. The
first part depends on both W and G. The second part,
coming from the characters, depends on neither W nor G.
For N → ∞, the wave function (9) is determined by the
representation maximizing the exponent. This representa-
tion satisfies

−AW ′
[
A

∫ 1

0
dxG(φ)

]
G′[φ(x)] +

δΓ

δφ(x)
= 0. (10)

Defining

Ã := AW ′
[
A

∫ 1

0
dxG(φ)

]
, (11)

it is obvious that this equation is equivalent to the equa-
tion determining the dominant representation in

Z̃ =
∫

Dφ exp
{

−N2Ã

∫ 1

0
dxG(φ) + N2Γ [φ, σ1, σ2]

}
.

(12)
But the dominant representation of this has been found
in [12]. Defining the Young tableau density [5]

ρ(φ) :=
dx
dφ

, (13)

it has been shown in [12] that in order to obtain the Young
tableau density corresponding to the dominant represen-
tation, one should solve the generalized Hopf equation

∂

∂t
(v ± iπσ) +

∂

∂θ
G[−i(v ± iπσ)] = 0, (14)

with the boundary conditions

σ(t = 0, θ) = σ1(θ),

σ(t = Ã, θ) = σ2(θ). (15)

Then, if there exists some t0 for which

v(t0, σ) = 0, (16)

one denotes the value of σ for t = t0 by σ0:

σ0(θ) := σ(t0, θ), (17)

and the desired density satisfies

πρ[−πσ0(θ)] = θ. (18)

What is shown is that from this point of view, the non-
local theory behaves like a local theory but with a surface
area Ã instead of A. Note, however, that Ã itself depends
on the Young tableau density of the dominant representa-
tion, through (11) or equivalently

Ã = AW ′
[
A

∫
dzρ(z)G(z)

]
. (19)

A special case of this result was obtained in [10], where
non-local generalized Yang–Mills theories on the sphere
were studied. It was shown there that in the limit N → ∞,
the theory is like a local generalized Yang–Mills theory
with the surface area Ã instead of A. The dependence of
Ã on A and ρ was the same as (19).

3 The critical behavior
of the non-local Yang–Mills theory

A non-local Yang–Mills theory is defined by

G(φ) =
1
2
φ2. (20)
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In [11], the critical area for a Yang–Mills theory on a disk,
σ1(θ) = δ(θ), has been found to be

A−1
cr =

1
π

∫
dθ′σ2(θ′)
π − θ′ . (21)

For a sphere, σ2(θ) = δ(θ), and one arrives at the familiar
result

Acr = π2. (22)

These results can be used to obtain the critical area for
a non-local Yang–Mills theory on a disk. One can obtain
Ãcr:

Ã−1
cr =

1
π

∫
dθ′σ2(θ′)
π − θ′ . (23)

There remains, however, one problem. To obtain Acr from
Ãcr, using (19), one needs the critical density ρcr. Even
for the disk, it is not easy to find a closed form for ρcr for
arbitrary σ2. On the sphere, the situation is better. In [11]
it has been shown that the solution to the Hopf equation
for σ1(θ) = σ2(θ) = δ(θ) is

πσ(t, θ) =
Ã

2t(Ã − t)

√
4t(Ã − t)

Ã
− θ2, (24)

and

v(t, θ) =
(2t − Ã)θ
2t(t − Ã)

. (25)

From this, one finds

t0 =
Ã

2
. (26)

Inserting this in (24), one arrives at

πσ0(θ) =
2
Ã

√
Ã − θ2. (27)

So, using (18),

ρ(z) =
Ã

2π

√
4
Ã

− z2. (28)

At the critical area, the maximum of ρ becomes 1. This
shows that

Ãcr = π2, (29)

as expected. But now one can insert the critical density
in (19) to obtain

π2 = AcrW
′
(
Acr

π2

)
. (30)

This is in accordance with what was found in [10].
One can go further. Consider a disk with the boundary

condition
σ2(θ) =

2
πs2

√
s2 − θ2. (31)

The solution to the Hopf equation with this boundary
condition is easily obtained using the solution to the Hopf

equation for the boundary conditions corresponding to the
sphere. One finds

πσ(t, θ) =
A0

2t(A0 − t)

√
4t(A0 − t)

A0
− θ2 (32)

and

v(t, θ) =
(2t − A0)θ
2t(t − A0)

, (33)

where A0 is defined through

4Ã(A0 − Ã)
A0

:= s2, (34)

or

A0 :=
4Ã2

4Ã − s2
. (35)

Again, one sets v = 0 to obtain σ0:

πσ0(θ) =
2
A0

√
A2

0 − θ2. (36)

From this,

ρ(z) =
A0

2π

√
4
A0

− z2. (37)

Note that for the specific boundary condition (31), the
shape of the Young tableau density ρ is always the semi-
ellipse function obtained for the sphere. At the critical
point,

ρcr(z) =
π

2

√
4
π2 − z2. (38)

Again, this is universal, as long as the boundary condition
is like (31). Putting this in (19), one obtains

Ãcr = AcrW
′
(
Acr

π2

)
. (39)

To find Acr, one needs Ãcr, which is obtained from (34),
and using A0,cr = π2:

Ãcr =
(
π2

2

)
(1 +

√
1 − s2/π2). (40)

Combining this with (39), one arrives at

1 +
√

1 − s2/π2

2
=

Acr

π2 W ′
(
Acr

π2

)
. (41)

What is achieved till now, is that we obtained the crit-
ical density for the sphere and for a disk with certain
boundary conditions making the disk a part of a sphere.
The critical area can also be found for a cylinder which is
a part of a sphere. Consider the boundary conditions

σ1(θ) =
2

πs2
1

√
s2
1 − θ2,

σ2(θ) =
2

πs2
2

√
s2
2 − θ2. (42)
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One can use (32) and (33) as the solutions to the Hopf
equation, but with (34) replaced by

4t1(A0 − t1)
A0

:= s2
1,

4t2(A0 − t2)
A0

:= s2
2, (43)

and
Ã = t2 − t1. (44)

Following the same arguments as used for the disk, one
obtains

t1 =
(
π2

2

) (
1 −

√
1 − s2

1/π
2

)
,

t2 =
(
π2

2

) (
1 +

√
1 − s2

2/π
2

)
, (45)

and

Ãcr =
(
π2

2

) (√
1 − s2

2/π
2 +

√
1 − s2

1/π
2

)
. (46)

Using this, the critical area is found to satisfy√
1 − s2

2/π
2 +

√
1 − s2

1/π
2

2
=

Acr

π2 W ′
(
Acr

π2

)
. (47)

The last thing to be considered is the case of a disk
which is almost a sphere; that is, a disk with the boundary
condition σ2(θ) ≈ δ(θ). By this approximation it is meant
that σ2 is an even function and one takes into account
only the second moment of θ:

r :=
∫

dθσ2(θ)θ2. (48)

It is assumed that σ2 is narrowly localized around θ = 0,
so that one can neglect the effect of the higher moments
of θ. As only the second moment of θ is important, one
can approximate σ2 with (31) for a small value of s. This
value of s is related to r through

r =
∫ s

−s

dθθ2
(

2
πs2

√
s2 − θ2

)
=

s2

4
. (49)

One can substitute this value of s in (41) to obtain

1 − r

π2 =
Acr

π2 W ′
(
Acr

π2

)
. (50)

An exactly similar argument can be used for a cylinder
with the boundary conditions near a delta function. The
result would be

1 − r1 + r2
π2 =

Acr

π2 W ′
(
Acr

π2

)
, (51)

where
ri :=

∫
dθσi(θ)θ2. (52)

Similar arguments may work for special boundary con-
ditions and non-local generalized Yang–Mills theories, pro-
vided the dominant representation of the system is known
for a sphere.
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